H=-16t^2+64t+50

Simple and best practice solution for H=-16t^2+64t+50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+64t+50 equation:



=-16H^2+64H+50
We move all terms to the left:
-(-16H^2+64H+50)=0
We get rid of parentheses
16H^2-64H-50=0
a = 16; b = -64; c = -50;
Δ = b2-4ac
Δ = -642-4·16·(-50)
Δ = 7296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7296}=\sqrt{64*114}=\sqrt{64}*\sqrt{114}=8\sqrt{114}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-8\sqrt{114}}{2*16}=\frac{64-8\sqrt{114}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+8\sqrt{114}}{2*16}=\frac{64+8\sqrt{114}}{32} $

See similar equations:

| 6(x−4)+3x=12x−8 | | 5^x-8=25^x+2 | | 6x+15=3x+18 | | 7x-3+4x+5+90=180 | | 12-x=12-7x | | -6x-9x-4=-2x-2 | | l/2+7.3=29.3 | | 2x+170=312 | | (x-10)^1/5=3 | | 10+6=4x+40 | | 27/(x+9)=1.5 | | x=3x^2+48x-324 | | 9+8x=2×+12 | | 2x^-12x+18=32 | | 13x-12=7x-6 | | X/8+1-x=-19 | | 28=6z+4z+8 | | 3(n+5)=2(3n+12) | | 15x+8=6x+35 | | x2+6x+8=0 | | 3x-3+4x=27 | | x^2-4x+8=14 | | 6x+27+7x-9=100 | | 14x+12=x+64 | | 5u+10=90 | | .15+a=60 | | 30+x+10=180 | | 13=-5x+3 | | -5x^2-25x+120=0 | | 15+n=60 | | 18-h=13;=-5 | | x^2+9x=40 |

Equations solver categories